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LETTER TO THE EDITOR 

Quantum effects on double-Morse hydrogen-bonded chains 

Lucia Baronit, Alessandro Cuccolitf., Valerio Tognettit$ and Ruggero 
Vaiall 
t Dipartimento di Fisica, Universit& di Fire% Largo E Fermi 2. 1-50125 Firenze. Italy 
t lstituto Nazionde di Fisica della Materia INFM, Unit& di Firenze. Italy 

Istituto di Elettronica Quantistica CNR. via Panciatichi 56/30, 1-50127 Rrenze, Italy 

Received 20 September 1995 

Abstract. Thermodynamic quantities of a hydrogen-bonded chain model are calculated by 
means of the effective potential method assuming a non-linear double-Morse interaction. ?be 
relevance of the quantum effect is pointed out, especially thmugh the modification of the intensity 
and position of the non-linear contribution to the specific heat. 

Hydrogen-bonded one-dimensional systems have been a subject of interest for a long time as 
many organic solids-e.g., imidazile and proteins in cellar membranes [ l l - a r e  composed 
of these chains. Moreover, many two- and three-dimensional systems, like ice [2] and 
rhodopsina in Holobacterium holobium [3], can be considered as aggregates of interacting 
hydrogen-bonded chains (for example, the Bernal-Fowler filament in ice). 

The rather surprising transport properties of these. compounds have been investigated, 
and a soliton mechanism for the coherent mobility of protons has been suggested [4, 51. 
The proton is assumed to move in a double-well potential (like the q54 or double Morse) 
originated by its interaction with the two nearest-neighbour heavier ions; different kinds of 
the interaction potential have been considered in the literature [6, 7, 8, 9, 10, 11, 121. 

The influence of strong quantum effects on the statistical and transport properties of 
the proton has been recently studied [12]. Indeed, these effects cannot be disregarded even 
at room temperature, because the thermal de Broglie wavelength is about 1 A, i.e. still 
comparable with the characteristic interaction range (2.76 8, for the Bemal-Fowler chain in 
ice). 

Quantum effects in the aforementioned ice chain were evaluated, and found to 
be significant [12], using the self-consistent harmonic approximation [13], with a trial 
Hamiltonian made up of independent harmonic oscillators, i.e. approximating the system in 
terms of Einstein’s model. In order to do a more realistic calculation, the full dispersion 
relation will be considered in our complete quantum treatment of the harmonic excitations, 
while a one-loop approximation will be employed only as far as the quantum effects of the 
non-linearity are concerned, the classical non-linear behaviour being fully embodied in our 
approach. This is within the framework of the effective potential method [14, 15, 16, 171, 
which successfully describes the thermodynamics and spectral shapes of quantum non-linear 
chains [IS]. 

In this letter we apply the method to the hydrogen-bonded chain, showing the relevance 
of the quantum effects in the thermodynamic quantities, and in particular, by means of the 
calculation of the non-linear part of the specific heat, the quantum character of the solitons 
is investigated. 
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As has usually been done in previous work, we describe the hydrogen-bonded chain 
as an alternating two-sublattice system: one sublattice is formed by protons (or deuterons), 
while the other one hosts the heavy ions (oxygen in ice crystals), and they interact throush 
a non-linear potential. Therefore, the following Hamiltonian may 
system: 

- 
be used to model the 

(1) 

The first two terms are the kinetic energy of the heavy and light sublattice, respectively, 
VO, is the hydrogen-oxygen interaction potential, while the other potential terms represent: 
a site potential for the oxygens (VO), which mimics the interaction with a substrate; the 
oxygen-oxygen (V,) and hydrogen-hydrogen (VW) interactions; Xi  and xi denote the 
distance of the heavy and light ions, respectively, from a common, fixed origin. 

When the static approximation for the heaviest ions is considered, the hydrogen ion 
moves in a local, degenerate doubleminimum potential; quartic 161, 44 [4,5], sineGordon 
[7,8] and double-Morse (DM) [lo, 11, 121 potentials have been used. The DM seems to be 
the most realistic interaction potential between hydrogen and oxygen, so we have chosen 
this as the inter-sublattice coupling: 

N 
“DM = C[B(~ el-d(*8-Xi-r)l)Z + E ( l  - el-d(.G+~-~rr)l  2 

N 

) I  
i=L 

= x [ v O H ( X i  -xi)+VOH(Xi+l -Xi)) (2) 
I = ]  

where B determines the well depth, d-l the well width (and implicitly the anharmonic 
character of the system), and r is the equilibrium distance between the oxygen and hydrogen 
ions. 

The usual choice for the other interactions is a simple parabolic potential, so the last 
row of equation (1) reads simply: 

- z [ k o ( X i  - iR)’ + R H H ( x ~ + ~  -xi  - R)’+ koo(Xi+l - X i  - R)’]. 
2 (3) 

Unless very crude approximations are used, the complete Hamiltonian model (1) is 
rarely considered, but it is common practice to neglect some of the parabolic interactions, 
which have a common feature of contributing to fixing the lattice constant of the chain, 
which makes the respective interaction constants not completely independent from each 
other. As we are interested in the statistical properties of the system, we find it sensible to 
neglect the on-site potential Vo(Xi), whose main effect is simply to prevent the longitudinal 
sliding of the chain, i.e. to introduce an energy gap in the phonon dispersion relation, which 
causes a finite activation energy of the translation mode. As far as the oxygen-oxygen and 
hydrogen-hydrogen interactions are concerned, there is Q priori no really good reason to 
neglect one of them: however, the actual computation of the thermodynamics of the chain 
is greatly simplified if only one is retained, and this appears to be sufficient to describe the 
main statistical properties of the system. We have considered both the cases where only VHH 
or VOO is present, and the results we get are very similar if the respective force constant is 
adjusted in order to match the dispersion relation given by the parameters already employed 
in the literature 1121 and reported in table 1. 

l N  

i=1 
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Table 1. The set of potential "meters used in the thermodynamics calculations 

10.7 7.8 0.94 2.76 36.6 22.0 

The use of the effective potential method allows us to reduce the evaluation of the 
quantum thermodynamic properties of the system described by the Hamiltonian ( 1 )  to the 
computation of those of the classical system whose interaction potential is given by 

N vea = vo + voo + vHH + C[&(1 - b - d ( x t - X c - r ) + D / 2  +e--2d(x.-X.-r)+ZD) 
i=l 

+&(I - 2e-d(Xi+i-&-r)+D/Z + e-2d(X.ii-xl-4+ZD 11 

where the following quantities have been introduced: 

Unl,,,$ is the unitary matxix which diagonalizes the harmonic approximation of the system, 
and uqs is the pure quantum square fluctuation of the q s  mode, whose eigenfrequency is 4.. 
The parameter D determines the renormalization of the non-linear interaction due to the pure 
quantum fluctuations, while .xdn and X d n  are the positions of the ions corresponding to the 
lranslation-invariant global minimum configuration of Vea, which is determined in a self- 
consistent way together with all the other parameters defined in equations (5 ) .  We observe 
that the effective potential (4) is defined in such a way as to preserve the symmetly properties 
of the original interaction potential; moreover, all of the quadratic part of the interaction is 
unaffected by the renormalization procedure, as the effective potential formalism treats the 
harmonic excitations of the system in a fully quantum way. 

The quantum non-linear effects in the system are determined by the coupling constant 
g = @f&)../-, where koH = 2d2& is the force constant of the harmonic 
approximation of a Morse oscillator, and  OH = is the reduced mass of an oxygen- 
hydrogen couple. With our choice of the parameters we have g = 0.5 when the lighter 
particle is a proton, and g = 0.42 when it is a deuteron. 

As mentioned before, the thermodynamic calculations of our system are greatly 
simplified when only Vm or VHH is considered, so the kernel of the transfer matrix becomes 



L628 Letter to the Editor 

symmetric and the extended Giirsey method 119. 20, 211, based on the bilateral Laplace 
transform (BLT), can be used. 

Considering only VOO seems to be more realistic because the greater oxygen mass should 
consbain the chain to a fixed lattice constant R and screen the proton-proton interaction. 
However, in the adiabatic approximation, i.e. when the dynamics of only the hydrogen 
subsystem is considered, taking a parabolic V ,  and a DM VOH, the model can be mapped 
into a double sinh4ordon system [IO] which admits kink-antikink solutions. The activation 
energy of these kinks is given by 

E ' - d R  - 2 F d r  co( - tanhdro) (6) 

where CO is the sound velocity and ro i s  the position of one of the two symmetric minima 
of the double-Morse potential. Ep turns out to be of the order of 2500 K for a chain with 
parameters as given in table 1. 

For such a system the soliton phenomenology is easier to perform; however, as the 
thermodynamics turns out to be practically the same, the soliton considerations can also be 
sensibly extended to the more realistic V w  potential. 

We have calculated the internal energy and the specific heat of the chain at fixed length, 
L = N R ,  in the range of temperatures from T = 25 K to T = 5400 K in order to see the 
behaviour of the quantum effects when the highest temperatures (of the classical region) are 
approached. 

t 

Figure 1. The intemal energy per particle at constant length of the classiw 11 line) and 
quantum (broken lines) DM chain. The diffcrent broken lines correspond to different values of 
the coupling constant g. 

In figure 1, the internal energy is shown for the classical and quantum systems as a 
function of the reduced temperature t = k s T / ~ .  The latter is plotted for different couplings 
starting from hydrogen (g = 0.5) and deuterons (g = 0.4). At the lowest temperatures, the 
quantum effects are apparent through the zero-point energy. For increasing temperatures the 
quantum curves approach the classical one as rapidly as the quantum coupling is decreasing. 

Analogous considerations can be made for the specific heat at constant length c, as 
shown in figure 2. It is worthwhile noticing that in the classical case a well pronounced 
peak is present, which strongly decreases when g increases. This peak can be ascribed to 
solitons: in the classical case, its position turns out to be at t 2: 0.2 (T  = 1100 K), in 
agreement with a soliton gas phenomenology. As usual [22],  the quantum effects manifest 
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Figure 2. The specific heat per particle af constant length of the classical and the quantum DM 
chain as a function of tempemure; symbols as in figure 1 .  

Figure 3. The pure non-linear contribution to specific heat per particle at constant length of the 
classical (-) and quantum (- - - -) hydrogen-bonded chain (g = 0.5). 

themselves in the decreasing of the intensity of the peak and the shifting of its position to 
lower temperatures, due to the lower energy of the kinks. These effects are better pointed 
out in figure 3, where the non-linear contribution to the specific heat Sc is reported. 

The results shown seem to confirm the presence of soliton excitations and their important 
role in the transferring of the protons along the chain. On the other hand the quantum 
character of the system is apparent at any realistic temperature. This leads to two important 
modifications of the peak of the non-linear contribution to the specific heat. These features 
can be explained by taking into account the fact that the quantum fluctuations decrease the 
energy of the barrier, enhancing the activated jumps across the two minima of the potential. 
Due to the increased number of activated solitons they can no longer be considered to 
be pure non-interacting particles and their interaction has to be taken into account [22]. 
The lower intensity of the peak, together with the shift to lower temperatures, reflects the 
interaction among the non-linear excitations with a related loss of coherence of propagation. 
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